Some Statistics on the Hypercubes of Catalan Permutations

نویسنده

  • Filippo Disanto
چکیده

For a permutation σ of length 3, we define the oriented graph Qn(σ). The graph Qn(σ) is obtained by imposing edge constraints on the classical oriented hypercube Qn, such that each path going from 0 to 1 in Qn(σ) bijectively encodes a permutation of size n avoiding the pattern σ. The orientation of the edges in Qn(σ) naturally induces an order relation σ among its nodes. First, we characterize σ. Next, we study several enumerative statistics on Qn(σ), including the number of intervals, the number of intervals of fixed length k, and the number of paths (or permutations) intersecting a given node.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On The Rearrangeability Of Hypercubes Networks Characterization Of Some Non-1-Partitionable Permutations On 4D-hypercubes

This paper addresses the problem of the nDhypercubes interconnection networks rearrangeability that is the capability of such networks to route optimally arbitrary permutations under queueless communication constraints. The k-partitioning is an unifying paradigm of such routing. For a permutation which is not constituted of two sub-permutations on two disjoint (n-1)D-hypercubes of the nD-hyperc...

متن کامل

Continued Fractions, Statistics, And Generalized Patterns

Recently, Babson and Steingrimsson (see [BS]) introduced generalized permutations patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation. Following [BCS], let ekπ (respectively; fkπ) be the number of the occurrences of the generalized pattern 12-3. . . -k (respectively; 21-3. . . -k) in π. In the present note, we study the distribution of ...

متن کامل

An Area-to-Inv Bijection Between Dyck Paths and 312-avoiding Permutations

The symmetric q, t-Catalan polynomial Cn(q, t), which specializes to the Catalan polynomial Cn(q) when t = 1, was defined by Garsia and Haiman in 1994. In 2000, Garsia and Haglund proved the existence of statistics a(π) and b(π) on Dyck paths such that Cn(q, t) = P π qt where the sum is over all n × n Dyck paths. Specializing t = 1 gives Cn(q) = P π q and specializing q = 1 as well gives the us...

متن کامل

Parity Theorems for Statistics on Permutations and Catalan Words

We establish parity theorems for statistics on the symmetric group Sn, the derangements Dn, and the Catalan words Cn, giving both algebraic and bijective proofs. For the former, we evaluate q-generating functions at q = −1; for the latter, we define appropriate signreversing involutions. Most of the statistics involve counting inversions or finding the major index of various words.

متن کامل

A New Approach For Optimal MIMD Queueless Routing Of Omega and Inverse-Omega Permutations On Hypercubes

Omega permutations constitute the subclass of particular permutations which have gained the more attention in the search of optimal routing of permutations in hypercubes. The reason of this attention comes from the fact that they are permutations for general-purpose computing like the simultaneous conflict-free access to the rows or the columns of a matrix. In this paper we address the problem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015